Details, Fiction and المعين
Details, Fiction and المعين
Blog Article
المعين: أقطاره متعامدة، ولكن أطوالها غير متساوية، كما أنها تشكل زاوية داخلية قائمة في المركز.[٣]
تسجيل حساب لديك حِساب؟ تسجيل الدخول هذا الموقع محمي check here بواسطة recaptcha ، تطبّق شروط الخدمة و سياسة الخصوصية لجوجل إعادة تعيين كلمة المرور
المعين عبارة عن مثلثين وكل مثلث متساوي الساقين، يشتركان في القاعدة.
ولأنّ المعين يتكون من أربعة أضلاع متساوية فإننا نستطيع أن نصيغ محيط المعين بالقانون التالي :
المعين: أضلاع المعين ليست متعامدة مع بعضها البعض، وفقط الأضلاع المتقابلة متساوية.[١]
نحن نستخدم ملفات تعريف الارتباط "الكوكيز" لتحسين تجربة استخدام ويكي هاو. باستخدام للموقع، أنت توافق على سياستنا الخاصة بالكوكيز .إعدادات ملفات تعريف الارتباط
يمكن أيضاً حساب ارتفاع المعين اعتماداً على قِيَم الأقطار، بالإضافة إلى طول أحد أضلاع المعين، وقيمة المساحة، وذلك باستخدام المعادلتين الآتيتين:[٢]
يختلف المعين عن المربع أيضًا بأن زواياه غير قائمةٍ، بينما زوايا المربع جميعها متساوية وقائمة، لذا يصبح المعين مربعًا عندما تكون زواياه قائمة، وبعبارةٍ أخرى يمكننا القول بأن: "كل مربعٍ هو معين ولكن كل معينٍ ليس مربعًا".
لماذا كانت الإجابه غير مفيده الإجابة لا تحتوي على المعلومات التي أبحث عنها
حساب المساحة من طول أحد الأضلاع، ومن جيب إحدى زاوياه: باستخدام القانون الآتي:
لحساب محيط المعين علينا إيجاد مجموع أطوال أضلاعه وبما أن جميع أضلاع المعين كالمربع متساوية في طولها؛ يمكن التعبير عن محيط المعين بالعلاقة:[٢]
هذه بذرة مقالة عن الهندسة الرياضية بحاجة للتوسيع. فضلًا شارك في تحريرها.
فيسبوك جوجل حساب ويكي هاو ليس لديك حساباً؟ إنشاء حساب
تم عرض هذا المقال ١٧٠٬٧٨٠ مرة/مرات. المعين هو متوازي أضلاع أضلاعه الأربعة متساوية في الطول. يوجد ثلاث صيغ لحساب مساحة المعين ستجد شرحها في هذا المقال.
قاعدة المعين هي أحد أضلاعه حيث يمكن استخدام طول أي ضلعٍ، لأنه كما ذكرنا سابقًا أضلاع المعين متساوية في الطول، والارتفاع هو المسافة العمودية من القاعدة المختارة إلى الجانب المقابل.
Report this page